Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(1): 244-250, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38085648

RESUMO

CRISPR-mediated aptasensors have gained prevalence for detecting non-nucleic acid targets. However, there is an urgent need to develop an easily customizable design to improve the signal-to-noise ratio, enhance universality, and expand the detection range. In this article, we report a CRISPR-mediated programmable aptasensor (CPAS) platform. The platform includes single-stranded DNA comprising the aptamer sequence, locker DNA, and a crRNA recognition region, forming a hairpin structure through complementary hybridization. With T4 DNA polymerase, the crRNA recognition region was transformed into a complete double-stranded DNA through stem-loop extension, thereby activating the trans-cleavage activity of Cas 12a and generating fluorescence signals. The specific binding between the target molecule and aptamer disrupted the formation of the hairpin structure, altering the fluorescence signals. Notably, the CPAS platform allows for easy customization by simply changing the aptamer sequence and locker DNA, without entailing adjustments to the crRNA. The optimal number of bases in the locker DNA was determined to be seven nucleotides for the SARS-CoV-2 spike (S) protein and four nucleotides for ATP. The CPAS platform exhibited high sensitivity for S protein and ATP detection. Integration with a lateral flow assay enabled sensitive detection within 1 h, revealing its excellent potential for portable analysis.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Oligonucleotídeos , DNA de Cadeia Simples , Nucleotídeos , Trifosfato de Adenosina
2.
J Pharm Biomed Anal ; 236: 115754, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37783051

RESUMO

Sensitive and accurate detection of interleukin 6 (IL-6) is crucial for the early diagnosis of cerebral infarction to improve patient survival rates. However, the low-abundance of IL-6 in cerebral infarction presents a significant challenge in developing effective diagnosis method. Herein, we studied and analyzed the strong fluorescence property of 4-aminophenol phosphate (APP) and developed an enzyme-linked immunosorbent assay (ELISA) for IL-6 detection. The detection was based on the integration of optical signal change induced by alkaline phosphatase (ALP)-catalyzed APP hydrolysis and ALP-mediated ELISA. The generated colorimetric signal of 4-aminophenol, APP hydrolysis product, was used for ELISA of IL-6 with a detection limit of 0.1 ng/mL, and the visual detection of IL-6 was achieved. The changes in APP fluorescence have a good linear relationship with the logarithm of IL-6 concentration in the range of 0.005 ng/mL to 5.0 ng/mL, with a detection limit of 0.001 ng/mL, which was 100 times lower than that of conventional pNPP-based ELISA. Furthermore, the constructed ELISA effectively distinguished between samples from patients with cerebral infarction and volunteers with non-cerebral infarction, and the severity of symptoms was well distinguished based on IL-6 measurement. The dual-mode ELISA demonstrated high feasibility of low-abundance biomarker detection and displayed good potential for accurate in vitro diagnosis.


Assuntos
Fosfatase Alcalina , Interleucina-6 , Humanos , Hidrólise , Fosfatos , Ensaio de Imunoadsorção Enzimática/métodos , Catálise , Infarto Cerebral , Limite de Detecção
3.
Anal Chim Acta ; 1272: 341510, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37355336

RESUMO

The development of biosensors mediated by synergistic quenching effect is of great significance for rapid and accurate clinical diagnosis. Hence, we prepared a cyan-emitting fluorescent Si dots for alkaline phosphatase (ALP) detection through the synergistic quenching effect of inner filter effect (IFE) and photo-induced electron transfer (PET). Si dots were prepared by microwave-assisted method, which displayed high quantum yield (28.7%), as well as good physiochemical properties, such as photo-stability, pH stability, and chemical stability. As the hydrolysate of 4-nitrophenyl phosphate disodium salt hexahydrate catalyzed by ALP, both IFE and PET of 4-nitrophenyl to Si dots were used for the turn-off mode detection of ALP. The linear relationships were established between the change of fluorescence intensity and ALP concentration in the range of 0.05 U L-1 to 5.0 U L-1, and 5.0 U L-1 to 80.0 U L-1, respectively. The detection limit was 0.01 U L-1. The synergistic quenching effect caused the turn-off mode detection to be more sensitive, and it can also be used for the accurate detection of ALP in human serum, thereby showing great anti-interference ability in complex environments.


Assuntos
Fosfatase Alcalina , Pontos Quânticos , Humanos , Fosfatase Alcalina/química , Fluorescência , Pontos Quânticos/química , Limite de Detecção , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos
4.
Anal Chem ; 95(20): 8063-8069, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37167072

RESUMO

It is well-established that different detection modes are necessary for corresponding applications, which can effectively reduce matrix interference and improve the detection accuracy. Here, we reported a magnetic separation method based on recombinase polymerase amplification (RPA)-assisted clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a for dual-mode analysis of African swine fever virus (ASFV) genes, including colorimetry and fluorescence. The ASFV gene was selected as the initial RPA template to generate the amplicon. The RPA amplicon was then recognized by CRISPR-associated RNA (crRNA), activating the trans-cleavage activity of Cas12a and leading to the nonspecific cleavage of ssDNA as well as a significant release of alkaline phosphatase (ALP) in the ALP-ssDNA modified magnetic bead. The released ALP can catalyze para-nitrophenyl phosphate to generate para-nitrophenol, resulting in substantial changes in absorbance and fluorescence, both of which can be used for detection with the naked eye. This strategy allows the sensitive detection of ASFV DNA, with a 20 copies/mL detection limit; no cross-reactivity with other viruses was observed. A good linear relationship was obtained in serum. In addition, this sensor displayed 100% specificity and sensitivity for clinical sample analysis. This method integrates the high sensitivity of fluorescence with easy readout of colorimetry and enables a simple, low-cost, and highly sensitive dual-mode detection of viral nucleic acid, thereby providing a broad prospect for the practical application in the diagnosis of virus infection.


Assuntos
Vírus da Febre Suína Africana , Recombinases , Animais , Suínos , Vírus da Febre Suína Africana/genética , Sistemas CRISPR-Cas/genética , Colorimetria , Nucleotidiltransferases , Fosfatase Alcalina , Corantes , Técnicas de Amplificação de Ácido Nucleico
5.
Small ; 19(23): e2207736, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36916696

RESUMO

DNA self-assembly has been developed as a kind of robust signal amplification strategy, but most of reported assembly pathways are programmed to amplify signal in one direction. Herein, based on mutual-activated cascade cycle of hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA), a closed cycle circuit (CCC) based DNA machine is developed for sensitive logic operation and molecular recognition. Benefiting from the synergistically accelerated signal amplification, the closed cyclic DNA machine enabled the logic computing with strong and significant output signals even at weak input signals. The typical logic operations such as OR, YES, AND, INHIBIT, NOR, and NAND gate, are conveniently and clearly executed with this DNA machine through rational design of the input and computing elements. Moreover, by integrating the target recognition module with the CCC module, the proposed DNA machine is further employed in the homogeneous detection of apurinic/apyrimidinic endonuclease 1 (APE1). The precise recognition and exponential signal amplification facilitated the highly selective and sensitive detection of APE1 with limit of detection (LOD) of 7.8 × 10-5 U mL-1 . Besides, the normal cells and tumor cells are distinguished unambiguously by this method according to the detected concentration difference of cellular APE1, which indicates the robustness and practicability of this method.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , DNA , Hibridização de Ácido Nucleico , Lógica , Limite de Detecção
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 290: 122295, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36603277

RESUMO

Flap endonuclease 1 (FEN1) is overexpressed in various types of human tumor cells and has been recognized as a promising biomarker for cancer diagnosis in recent years. In this work, a label-free fluorescent nanosensor for FEN1 detection was developed based on cleavage-induced ligation of bifunctional dumbbell DNA and in-situ signal readout by copper nanoparticles (CuNPs). The dumbbell DNA was rationally designed with a FEN1 cleavable 5' flap for target recognition and AT-riched stem-loop template for CuNPs formation. In the presence of FEN1, 5' overhanging DNA flap of dumbbell DNA was effectively removed to form a linkable nick site. After the ligation by T4 DNA ligase, the dumbbell DNA changed to exonuclease-resisted closed structure which enabled in-situ generation of fluorescent CuNPs that served as signal source for target quantification. The low background attributed to synergic digestion by exonucleases facilitated the highly sensitive detection of FEN1 with limit of detection of 0.007 U/mL. Additionally, the sensor was extended to the assay of FEN1 inhibitor (aurintricarboxylic acid) with reasonable results. Last but not least, the normal cells and tumor cells were distinguished unambiguously by this sensor according to the detected concentration difference of cellular FEN1, which indicates the robustness and practicability of this nanosensor.


Assuntos
Endonucleases Flap , Neoplasias , Humanos , Endonucleases Flap/genética , DNA/química
7.
Nano Res ; 16(4): 5383-5390, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35992363

RESUMO

The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has necessitated rapid, easy-to-use, and accurate diagnostic methods to monitor the virus infection. Herein, a ratiometric fluorescence enzyme-linked immunosorbent assay (ELISA) was developed using Si-fluorescein isothiocyanate nanoparticles (FITC NPs) for detecting SARS-CoV-2 nucleocapsid (N) protein. Si-FITC NPs were prepared by a one-pot hydrothermal method using 3-aminopropyl triethoxysilane (APTES)-FITC as the Si source. This method did not need post-modification and avoided the reduction in quantum yield and stability. The p-nitrophenyl (pNP) produced by the alkaline phosphatase (ALP)-mediated hydrolysis of p-nitrophenyl phosphate (pNPP) could quench Si fluorescence in Si-FITC NPs via the inner filter effect. In ELISA, an immunocomplex was formed by the recognition of capture antibody/N protein/reporter antibody. ALP-linked secondary antibody bound to the reporter antibody and induced pNPP hydrolysis to specifically quench Si fluorescence in Si-FITC NPs. The change in fluorescence intensity ratio could be used for detecting N protein, with a wide linearity range (0.01-10.0 and 50-300 ng/mL) and low detection limit (0.002 ng/mL). The concentration of spiked SARS-CoV-2 N protein could be determined accurately in human serum. Moreover, this proposed method can accurately distinguish coronavirus disease 2019 (COVID-19) and non-COVID-19 patient samples. Therefore, this simple, sensitive, and accurate method can be applied for the early diagnosis of SARS-CoV-2 virus infection. Electronic Supplementary Material: Supplementary material (characterization of Si-FITC NPs (FTIR spectrum, XRD spectra, and synchronous fluorescence spectra); condition optimization of ALP response (fluorescence intensity ratio change); mechanism investigation of ALP response (fluorescence lifetime decay curves and UV-vis absorption spectra); detection of N protein using commercial ELISA Kit; analytical performance of assays for ALP detection or SARS-CoV-2 N protein detection; and determination results of SARS-CoV-2 N protein in human serum) is available in the online version of this article at 10.1007/s12274-022-4740-5.

8.
Nano Res ; 16(2): 2859-2865, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36196429

RESUMO

Coronavirus disease 2019 (COVID-19) highlights the importance of rapid and reliable diagnostic assays for the management of virus transmission. Here, we developed a one-pot hydrothermal method to prepare Si-FITC nanoparticles (NPs) for the fluorescent immunoassay of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (N protein). The synthesis of Si-FITC NPs did not need post-modification, which addressed the issue of quantum yield reduction during the coupling reaction. Si-FITC NPs showed two distinct peaks, Si fluorescence at λ em = 385 nm and FITC fluorescence at λ em = 490 nm. In the presence of KMnO4, Si fluorescence was decreased and FITC fluorescence was enhanced. Briefly, in the presence of N protein, catalase (CAT)-linked secondary antibody/reporter antibody/N protein/capture antibody immunocomplexes were formed on microplates. Subsequently, hydrogen peroxide (H2O2) and Si-FITC NPs/KMnO4 were injected into the microplate together. The decomposition of H2O2 by CAT resulted in remaining of KMnO4, which changed the fluorescence intensity ratio of Si-FITC NPs. The fluorescence intensity ratio correlated significantly with the N protein concentration ranging from 0.02 to 50.00 ng/mL, and the detection limit was 0.003 ng/mL, which was more sensitive than the commercial ELISA kit with a detection limit of 0.057 ng/mL. The N protein concentration can be accurately determined in human serum. Furthermore, the COVID-19 and non-COVID-19 patients were distinguishable by this method. Therefore, the ratiometric fluorescent immunoassay can be used for SARS-CoV-2 infection diagnosis with a high sensitivity and selectivity. Electronic Supplementary Material: Supplementary material (characterization of Si-FITC NPs (FTIR, HRXPS); stability investigation of Si-FITC NPs (photostability, pH stability, anti-interference ability); stability investigation of free FITC (pH value, KMnO4); quenching mechanism of KMnO4 (UV-vis absorption spectra, fluorescence lifetime decay curves); reaction condition optimization of biotin-CAT with H2O2 (pH value, temperature, time); detection of N protein using commercial ELISA Kit; selectivity investigation of assays for SARS-CoV-2 N protein detection; determination results of SARS-CoV-2 N protein in human serum) is available in the online version of this article at 10.1007/s12274-022-5005-z.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 280: 121550, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35777229

RESUMO

Alkaline phosphatase (ALP) is an important biomarker associated with diabetes, liver dysfunction, bone diseases, and breast cancer. Here we developed a method based on synergetic fluorescence recovery for the sensitive detection of ALP. Cadmium-zinc-selenium (CdZnSe) quantum dots (QDs) were prepared by one-pot water bath method without any complicated and rigorous conditions. CdZnSe QDs displayed high luminous efficiency, good stability, and good biocompatibility. KMnO4 and ascorbic acid phosphate (AAP) can dynamically quench the fluorescence of CdZnSe QDs. Ascorbic acid, produced by ALP-catalyzed hydrolysis of AAP, reacted with KMnO4, causing the synergetic fluorescence recovery of CdZnSe QDs. The synergetic recovery efficiency correlates well with the logarithmic ALP concentration in the range of 2.5-250 U/L with a detection limit of 0.21 U/L. In addition, good recoveries were obtained in the detection of ALP in human serum. This method provided a new research idea to improve the detection sensitivity and selectivity of ALP detection.


Assuntos
Fosfatase Alcalina , Pontos Quânticos , Ácido Ascórbico , Fluorescência , Humanos , Limite de Detecção , Espectrometria de Fluorescência/métodos , Zinco
10.
Sens Actuators B Chem ; 369: 132306, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35813462

RESUMO

The continuing global spread of Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, has led to an unprecedented global health crisis. Effective and affordable methods are needed to diagnose SARS-CoV-2 infection. In this work, a ratiometric fluorescence probe, Si-Mn:ZnSe nanoparticles, was constructed through the electrostatic interaction between Si dots and Mn:ZnSe QDs, and the fluorescence of Mn:ZnSe QDs has a specifical response to H2O2. An immunocomplex was formed by the recognition of capture antibody/spike (S) protein/spike neutralizing antibody/biotinylated second antibody/streptavidin/biotinylated catalase (CAT). In the presence of S protein, CAT effectively catalyzed the decomposition of H2O2 in the system, and the fluorescence of Mn:ZnSe QDs was not specifically quenched. Based on this principle, a ratiometric immunoassay of SARS-CoV-2 S protein was established. The sensitivity of the proposed ELISA method was comparable to that of the commercial kit. In addition, this method can effectively distinguish the pseudo-SARS-CoV-2 virus and other pseudovirus. Therefore, this method provided a reliable and potential direction for diagnosing SARS-CoV-2 infection.

12.
J Mater Chem B ; 10(23): 4473-4478, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35612558

RESUMO

With the prevalence of diabetes, rapid and simple blood glucose monitoring has become more and more important. Here, we report the synthesis of bio-templated N3-CdZnTeS quantum dots (QDs), which are great fluorescent biological labels and were used for the fabrication of dual-emissive dye@protein-QD conjugates via copper-free click chemistry, such as the 5(6)-carboxyfluorescein@glucose oxidase-quantum dot (FAM@GOx-QDs) complex. When adding glucose, the red fluorescence of the CdZnTeS QDs sharply decreased, while the green fluorescence of FAM was invariable. A good linear relationship ranging from 0.3 to 30 µM was obtained for glucose detection, with the limit of detection as low as 0.035 µM. Notably, the DNA-bridging FAM@GOx-QDs complex exhibited enhanced enzyme activity and stability, and was applied for the differentiation of diabetic and healthy people by the naked eye.


Assuntos
Pontos Quânticos , Glicemia , Automonitorização da Glicemia , Glucose , Humanos , Espectrometria de Fluorescência
13.
Anal Chem ; 94(18): 6665-6671, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35466670

RESUMO

Intracellular pH is an important regulator of cell function, and its subtle changes may greatly affect cell activities and cause diseases. Reliable imaging of intracellular pH remains a huge challenge. Dual-emitting Mn2+-doped quantum dots (QDs) can be directly used as a ratiometric fluorescent probe without further modification, but they displayed low performance in terms of photoluminescence, stability, and intensity ratio regulation. Here, we report intrinsic dual-emitting CdZnSe/Mn:ZnS QDs with high photoluminescence efficiency, good stability, and biocompatibility. The emission intensity ratio was selectively regulated by Mn2+ doping. Because of aggregation-induced quenching of QDs, the exciton emission of CdZnSe/Mn:ZnS QDs (471 nm) was sensitive to pH, while the Mn2+-doped emission (606 nm) was passive to pH, which was probably due to little self-quenching in Mn2+-doped emission caused by weak Mn-Mn coupling interaction. Dual-emitting CdZnSe/Mn:ZnS QDs exhibited excellent pH-responsiveness in the range of pH 4.0 to 12.0 and were used for pH imaging in live HeLa cells. When the pH value of HeLa cells changed from 5.0 to 9.0, the emission changed from red to blue. Furthermore, these dual-emitting CdZnSe/Mn:ZnS QDs can provide a versatile platform for biosensors and biological imaging.


Assuntos
Pontos Quânticos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Manganês , Pontos Quânticos/toxicidade , Sulfetos , Compostos de Zinco
14.
Anal Chem ; 94(5): 2648-2654, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35080851

RESUMO

Reverse transcription uses the reverse transcriptase enzyme to synthesize deoxyribonucleic acid (DNA) from a ribonucleic acid (RNA) template. This plays an essential role in viral replication. There are still, however, many unknown facts regarding the timing and dynamic processes involved in this life stage. Here, three types of dual-fluorescence human immunodeficiency virus type-1 (HIV-1) particles were constructed with high infectivity, and the sequential process of reverse transcription was observed by real-time imaging of a single HIV-1 particle. Viral uncoating occurred at 60-120 min post infection. Subsequently, at 120-180 min post infection, the viral genome was separated into two parts and reverse-transcribed to generate a DNA product. Nevirapine (NVP), a reverse transcriptase inhibitor, can delay the dynamic process. This study revealed a delicate, sequential, and complex relationship between uncoating and reverse transcription, which may facilitate the development of antiviral drugs.


Assuntos
Infecções por HIV , HIV-1 , Imagem Individual de Molécula , Replicação Viral , Desenvelopamento do Vírus , Infecções por HIV/genética , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , Transcriptase Reversa do HIV/fisiologia , HIV-1/fisiologia , Humanos , Transcrição Reversa/fisiologia , Imagem Individual de Molécula/métodos , Replicação Viral/fisiologia , Desenvelopamento do Vírus/fisiologia
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 266: 120410, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34601367

RESUMO

In this work, an environmentally-friendly and cost-effective enzyme mimic was obtained by facile one-pot preparation of chitosan/Cu/Fe (CS/Cu/Fe) composite. This composite exhibited significantly enhanced oxidase-mimicking activity during catalyzing the oxidation of 3, 3', 5, 5'-tetramethylbenzidine (TMB). The CS/Cu/Fe composite was comprehensively characterized and the possible catalytic mechanism was reasonably explored and discussed. Benefiting from the thermal stability and the compatibility with carbohydrate, the CS/Cu/Fe composite was further integrated with agarose hydrogel to fabricate a portable analytical tube containing oxidase mimic. Based on the inhibition of the catalytic oxidation of TMB in the presence of cysteine, as well as the recovery of oxidase-like activity of CS/Cu/Fe due to the specific complexation of cysteine and mercury ion (Hg2+), the rapid colorimetric detection of Hg2+ was successfully carried out in the analytical tube. This colorimetric method showed good linear response to Hg2+ over the range from 40 nM to 8.0 µM with a detection limit of 8.9 nM. The method also revealed high selectivity and satisfactory results in recovery experiments of Hg2+ detection in tap water and lake water. Furthermore, it was found that the effective removal of Hg2+ could be realized in the analytical tube based on efficient Hg2+ adsorption by CS/Cu/Fe composite and agarose hydrogel. This study not only prepared a robust and low-cost enzyme mimic, but also proposed a smart strategy to simultaneously monitor and remove toxic Hg2+ from contaminated water.


Assuntos
Quitosana , Mercúrio , Adsorção , Catálise , Colorimetria
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120102, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198116

RESUMO

In this work, an environmentally-friendly and versatile nanobeacon was constructed by utilizing DNA-templated copper nanoparticles (CuNPs) as fluorescence signal source. As the key component of the nanobeacon, a hairpin DNA was designed to contain four segments: two segments for CuNPs template sequence, a target recognition segment and a blocking segment. At room temperature, the target recognition segment partly hybridizes with the blocking segment and thus prohibits the formation of double stranded DNA template, so that no CuNPs can be generated on the hairpin DNA. While a target is introduced, the specific binding of target with recognition sequence triggers off the conformational transformation of the hairpin DNA, which contributes to the formation of the CuNPs template. As a result, the in-situ generation of CuNPs gives birth to the fluorescence signal readout that can be used to identify the target. By reasonably varying the recognition sequence within hairpin DNA, a series of nanobeacons in response to corresponding targets, such as DNA, microRNA, thrombin, and ATP, were put forward with satisfactory sensitivity and selectivity. Moreover, this nanobeacon was also integrated with the strategy of enzyme-assisted target-recycling to realize signal amplification and ultrasensitive detection, which further demonstrated the versatility of the nanobeacon. This novel nanobeacon is expected to be a promising alternative to classical dye-labeled molecular beacon and provide new perspective on ultrasensitive fluorescence sensing.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Cobre , DNA , Corantes Fluorescentes , Espectrometria de Fluorescência , Trombina
17.
ACS Appl Mater Interfaces ; 13(21): 24477-24486, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-33961399

RESUMO

The pseudovirus strategy makes studies of highly pathogenic viruses feasible without the restriction of high-level biosafety facility, thus greatly contributing to virology and is used in the research studies of SARS-CoV-2. Here, we generated a dual-color pseudo-SARS-CoV-2 virus using a human immunodeficiency virus-1 pseudovirus production system and the SARS-CoV-2 spike (S) glycoprotein, of which the membrane was labeled with a lipophilic dye (DiO) and the genomic RNA-related viral protein R (Vpr) of the viral core was fused with mCherry. With this dual-color labeling strategy, not only the movement of the whole virus but also the fate of the labeled components can be traced. The pseudovirions were applied to track the viral entry at a single-particle level in four types of the human respiratory cells: nasal epithelial cells (HNEpC), pulmonary alveolar epithelial cells (HPAEpiC), bronchial epithelial cells (BEP-2D), and oral epithelial cells (HOEC). Pseudo-SARS-CoV-2 entered into the host cell and released the viral core into the cytoplasm, which clearly indicates that the host entry mainly occurred through endocytosis. The infection efficiency was found to be correlated with the expression of the known receptor of SARS-CoV-2, angiotensin-converting 2 (ACE2) on the host cell surface. We believe that the dual-color fluorescently labeled pseudovirus system created in this study can be applied as a useful tool for many purposes in SARS-CoV-2/COVID-19.


Assuntos
Corantes Fluorescentes/química , Alvéolos Pulmonares/virologia , SARS-CoV-2/fisiologia , Internalização do Vírus , Enzima de Conversão de Angiotensina 2/metabolismo , Endocitose , Células Epiteliais/virologia , Fluorescência , Células HEK293 , HIV-1/genética , Humanos , Mucosa Nasal/virologia , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
18.
ACS Appl Mater Interfaces ; 13(7): 7890-7896, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33513005

RESUMO

Nanodrug delivery systems are very promising for highly efficient anticancer drug delivery. However, the present nanosystems are commonly located in the cytoplasm and mediate uncontrolled release of drugs into cytosol, while a large number of anticancer drugs function more efficiently inside the nucleus. Here, we constructed a CRISPR-dCas9-guided and telomerase-responsive nanosystem for nuclear targeting and smart release of anticancer drugs. CRISPR-dCas9 technology has been employed to achieve conjugation of mesoporous silica nanoparticles (MSNs) with a high payload of the active anticancer drug, doxorubicin (DOX). A specifically designed wrapping DNA was used as a telomerase-responsive biogate to encapsulate DOX within MSNs. The wrapping DNA is extended in the presence of telomerase, which is highly activated in tumor cells, but not in normal cells. The extended DNA sequence forms a rigid hairpin-like structure and diffuses away from the MSN surface. CRISPR-dCas9 specifically targets telomere-repetitive sequences at the tips of chromosomes, facilitating the precise delivery of the nanosystem to the nucleus, and effective drug release triggered by telomerase that was enriched around telomeric repeats. This study provides a strategy and nanosystem for nuclear-targeted delivery and tumor-specific release of anticancer drugs that will maximize the efficiency of cancer cell destruction.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Proteína 9 Associada à CRISPR/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Telomerase/química , Antibióticos Antineoplásicos/química , Proteína 9 Associada à CRISPR/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Doxorrubicina/química , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Estrutura Molecular , Nanopartículas/metabolismo , Imagem Óptica , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Telomerase/metabolismo
19.
Anal Chem ; 93(2): 777-783, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33300344

RESUMO

Bioorthogonal chemistry has been considered as a powerful tool for biomolecule labeling due to its site specificity, moderate reaction conditions, high yield, and simple post-treatment. Covalent coupling is commonly used to modify quantum dots (QDs) with bioorthogonal functional group (azide or cycloalkyne), but it has a negative effect in the decrease of QDs' quantum yield and stability and increase of QDs' hydrodynamic diameter. To overcome these disadvantages, we propose a novel method for the preparation of two kinds of clickable QDs by the strong interaction of -SH with metal ions. One system involves azide-DNA-functionalized QDs, which are used for bioconjugation with dibenzocyclooctyne (DBCO)-modified glucose oxidase (GOx) to form a GOx-QDs complex. After bioconjugation, the stability of QDs was improved, and the activity of GOx was also enhanced. The GOx-QDs complex was used for rapid detection of blood glucose by spectroscopy, naked eye, and paper-based analytical devices. The second system involves DBCO-DNA-functionalized QDs, which are used for an in situ bioorthogonal labeling of HeLa cells through metabolic oligosaccharide engineering. Therefore, these clickable QDs based on DNA functionalization can be applied for rapid and effective labeling of biomolecules of interest.


Assuntos
Técnicas Biossensoriais/métodos , Pontos Quânticos , Glicemia , Compostos de Cádmio/química , Diabetes Mellitus/sangue , Glucose/química , Glucose/metabolismo , Células HeLa , Humanos , Telúrio/química , Zinco/química
20.
Anal Bioanal Chem ; 412(22): 5283-5289, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32494916

RESUMO

In this work, we developed a triple-parameter strategy for the detection of telomerase activity from cancer cells and urine samples. This strategy was developed based on magnetic bead-enzyme hybrids combined with fluorescence analysis, colorimetric assay, or adenosine triphosphate (ATP) meter as readout. The application of magnetic bead-enzyme hybrids has the advantages of magnetic separation and signal amplification. These detection methods can be used individually or in combination to achieve the optimal sensing performance and make the results more convincing. Among them, the ATP meter with portable size had easy operation and low cost, and this response strategy provided a higher sensitivity at the single-cell level. The designed strategy was suitable as naked-eye sensor and point-of-care testing (POCT) for rapid assaying of telomerase activity. Graphical abstract Magnetic bead-enzyme assemble for triple-parameter telomerase detection.


Assuntos
Magnetismo , Análise de Célula Única/métodos , Telomerase/análise , Trifosfato de Adenosina/análise , Células HeLa , Humanos , Limite de Detecção , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...